

Welcome to the ODES scikit documentation!

The ODES scikit provides access to Ordinary Differential Equation (ODE) solvers and Differential Algebraic Equation (DAE) solvers not included in scipy [https://scipy.org/]. A convenience function scikits.odes.odeint.odeint() [https://bmcage.github.io/odes/dev/ode.html#scikits.odes.odeint.odeint] is available for fast and fire and forget integration. Object oriented class solvers scikits.odes.ode.ode [https://bmcage.github.io/odes/dev/ode.html#scikits.odes.ode.ode] and scikits.odes.dae.dae [https://bmcage.github.io/odes/dev/dae.html#scikits.odes.dae.dae] are available for fine control. Finally, the low levels solvers are also directly exposed for specialised needs.

Detailed API documentation can be found here [https://bmcage.github.io/odes]

Contents:

	Installation
	Requirements before install

	Installation

	Installation of ODES from git checkout

	Troubleshooting

	Using Nix

	Structure of odes and User’s Guide
	Simple Function Interface (odeint)

	Object Oriented Interface (ode and dae)

	Lower-level interfaces

	Choosing a Solver
	Performance of the Solvers

	Reporting Bugs, Contributing and Releasing
	Reporting Bugs

	Getting the code

	Running the Tests

	Adding Examples

	Building the Docs

	Creating a New Release

	Citing ODES

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements before install

If you use nix (see below), all dependencies will be installed for you.

If you do not wish to use nix then you will need to do the following.

Before building odes, you need to have installed:

	numpy (automatically dealt with if using pip >=10)

	Python header files (python-dev/python3-dev on Debian/Ubuntu-based
distributions, python-devel on Fedora)

	C compiler

	Fortran compiler (e.g. gfortran)

	Sundials 4.1.0 [https://computation.llnl.gov/casc/sundials/download/download.html]

In addition, if building from a git checkout, you’ll also need Cython.

It is required that Sundials is built with the BLAS/LAPACK interface enabled, so check
the Fortran Settings section. A typical install if sundials download package is
extracted into directory sundials-3.1.1 is on a *nix system:

mkdir build-sundials-4.1.0
cd build-sundials-4.1.0/
cmake -DLAPACK_ENABLE=ON -DSUNDIALS_INDEX_SIZE=64 -DCMAKE_INSTALL_PREFIX=<install_path> ../sundials-4.1.0/
make install

Warning

Make sure you use the Fortran compiler as used for your BLAS/LAPACK install!

Tip

We recommend using OpenBLAS [http://www.openblas.net/], which provides a
optimised BLAS implementation which widely distributed, and which doesn’t
need to be recompiled for different CPUs.

Installation

To install odes, use:

pip install scikits.odes

which will download the latest version from PyPI. This will handle the installation of the additional runtime dependencies of odes. You should then run the tests to make sure everything is set up correctly.

If you have installed SUNDIALS in a non-standard path (e.g. /usr/ or /usr/local/), you can set $SUNDIALS_INST in your environment to the installation prefix of SUNDIALS (i.e. value of <install_path> mentioned above).

Testing your version of odes

To test the version in python, use in the python shell:

>>> import pkg_resources
>>> pkg_resources.get_distribution("scikits.odes").version

Running the Tests

You need nose to run the tests. To install nose, run:

pip install nose

To run the tests, in the python shell:

>>> import scikits.odes as od; od.test()

Note that the sundials library must be in your LD_LIBRARY_PATH. So, make sure the directory $SUNDIALS_INST/lib is included. You can do this for example as follows (assuming sundials was installed in /usr/local:

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

Installation of ODES from git checkout

You can copy the git repository locally in directory odes with:

git clone git://github.com/bmcage/odes.git odes

Inside the odes directory, run:

pip install .

which will install the checked out version of odes. The same environment
variables mentioned above can be used to control installation options.

Note

If you try to run the tests whilst in the odes directory, Python will pick up the source directory, and not the built version. Move to a different directory when running the tests.

Troubleshooting

LAPACK Not Found

Most issues with using odes are due to incorrectly setting the LAPACK libraries, resulting in error, typically:

AttributeError: module 'scikits.odes.sundials.cvode' has no attribute 'CVODE'

or:

undefined reference to dcopy_

This is an indication odes does not link correctly to the LAPACK directories. You can solve this as follows:
When installing sundials, look at output of cmake. If it has:

-- A library with BLAS API not found. Please specify library location.
-- LAPACK requires BLAS
-- A library with LAPACK API not found. Please specify library location.

then odes will not work. First make sure you install sundials with BLAS and LAPACK found. On Debian/Ubuntu one needs sudo apt-get install libopenblas-dev liblapack-dev
Once installed correctly, the sundials cmake output should be:

-- A library with BLAS API found.
-- Looking for Fortran cheev
-- Looking for Fortran cheev - found
-- A library with LAPACK API found.
-- Looking for LAPACK libraries... OK
-- Checking if Lapack works... OK

You can check the CMakeCache.txt file to see which libraries are found. It should have output similar to:

//Blas and Lapack libraries
LAPACK_LIBRARIES:STRING=/usr/lib/liblapack.so;/usr/lib/libf77blas.so;/usr/lib/libatlas.so
//Path to a library.
LAPACK_lapack_LIBRARY:FILEPATH=/usr/lib/liblapack.so

With above output, you can set the LAPACK directories and libs correctly. To force odes to find these directories you can set them by force by editing the file scikits/odes/sundials/setup.py, and passing the directories and libs as used by sundials:

INCL_DIRS_LAPACK = ['/usr/include', '/usr/include/atlas']
LIB_DIRS_LAPACK = ['/usr/lib']
LIBS_LAPACK = ['lapack', 'f77blas', 'atlas']

Note that on your install, these directories and libs might be different than the example above! With these variables set, installation of odes should be successful.

Linking Errors

Verify you link to the correct sundials version. Easiest to ensure you only have one libsundials_xxx installed. If several are installed, pass the correct one via the $SUNDIALS_INST environment variable.

Using Nix

By using the Nix package manager, you can install scikits-odes in one
line. Of course you need to install nix [https://nixos.org/nix/]
first:

curl https://nixos.org/nix/install | sh

And now you can start a python shell with scikits-odes (and numpy) ready for use:

nix-shell \
-p python37Packages.scikits-odes \
-p python37Packages.numpy \
--run "python3"

You can verify that lapack is available (although the nix install will have
run many tests to check this already), try the following python snippet in the interpreter:

import numpy as np
from scikits.odes.odeint import odeint

tout = np.linspace(0, 1)
initial_values = np.array([1])

def right_hand_side(t, y, ydot):
 ydot[0] = y[0]

output = odeint(right_hand_side, tout, initial_values,linsolver='lapackdense')
print(output.values.y)

You’ll probably want to write a shell.nix or similar for your
project but you should refer to the nix documentation for this.

Structure of odes and User’s Guide

There are a number of different ways of using odes to solve a system of
ODEs/DAEs:

	scikits.odes.ode.ode [https://bmcage.github.io/odes/dev/ode.html#scikits.odes.ode.ode] and scikits.odes.dae.dae [https://bmcage.github.io/odes/dev/dae.html#scikits.odes.dae.dae] classes, which provides an object oriented interface and significant amount of control of the solver.

	scikits.odes.odeint.odeint() [https://bmcage.github.io/odes/dev/ode.html#scikits.odes.odeint.odeint], a single function alternative to the object
oriented interface.

	Accessing the lower-level solver-specific wrappers, such as the modules in scikits.odes.sundials [https://bmcage.github.io/odes/dev/api.html#module-scikits.odes.sundials].

In general, a user supplies a function with the signature:

right_hand_side(t: float, y: Array[float], ydot: Array[float]) -> int

for the ODE solvers, and:

right_hand_side(t: float, y: Array[float], ydot: Array[float], residue: Array[float]) -> int

for the DAE solvers, as well as positions to integrate between and initial
values.

Simple Function Interface (odeint)

The simplest user program using the odeint interface, assuming you have
implemented the ODE right_hand_side mentioned above, is:

import numpy as np
from scikits.odes.odeint import odeint

tout = np.linspace(0, 1)
initial_values = np.array([0])

def right_hand_side(t, y, ydot):
 """
 User's right hand side function
 """
 pass

output = odeint(right_hand_side, tout, initial_values)
print(output.values.y)

By default, CVODE’s BDF method is used, however a different method can be
specified via the method keyword. Methods specific to odeint, which use
the recommended setting for the individual solvers, are:

	bdf

	CVODE’s BDF method (default)

	admo

	CVODE’s Adams-Moulton method

	rk5

	dopri5 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html] Runge-Kutta method of order (4)5

	rk8

	dop853 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html] Runge-Kutta method of order 8(5,3)

	beuler

	Implicit/Backward Euler method (for educational purposes only!)

	trapz

	Trapezoidal Rule method (for educational purposes only!)

A specific solver (e.g. CVODE) can also be passed in via method, in the
same way specified by the Object Oriented Interface. Solver specific options
can be passed in via additional keyword arguments.

Object Oriented Interface (ode and dae)

The object oriented interfaces for ode and dae are almost identical,
with solver customisations via either keyword arguments or via a
set_options method, repeated usage of the same solver via the solve
method, and individual stepping via the step method.

Note

odes 2.2.2 and later have a new output format, which provides
access to more solver information. In a future release, the default will be
the new output format. To use the new output format, pass as a keyword
argument old_api=False.

ode Object Oriented Interface

The simplest user program using the ode interface, assuming you have
implemented the ODE right_hand_side mentioned above, is:

import numpy as np
from scikits.odes.ode import ode

SOLVER = 'cvode'
tout = np.linspace(0, 1)
initial_values = np.array([0])
extra_options = {'old_api': False}

def right_hand_side(t, y, ydot):
 """
 User's right hand side function
 """
 pass

ode_solver = ode(SOLVER, right_hand_side, **extra_options)
output = ode_solver.solve(tout, initial_values)
print(output.values.y)

Extra options are solver specific, but there is usually support for passing in
user data (passed as additional arguments to the provided right_hand_side),
and for setting the tolerance of the solver. See Choosing a Solver for
more information about individual solvers.

Examples

There are a number of ode examples showing different features, including
solver specific features. Here are some of them:

	https://github.com/bmcage/odes/blob/master/ipython_examples/Simple%20Oscillator.ipynb

dae Object Oriented Interface

The simplest user program using the dae interface, assuming you have
implemented the DAE right_hand_side mentioned above, is:

import numpy as np
from scikits.odes.dae import dae

SOLVER = 'ida'
tout = np.linspace(0, 1)
y_initial = np.array([0])
ydot_initial = np.array([0])
extra_options = {'old_api': False}

def right_hand_side(t, y, ydot, residue):
 """
 User's right hand side function
 """
 pass

dae_solver = dae(SOLVER, right_hand_side, **extra_options)
output = dae_solver.solve(tout, y_initial, ydot_initial)
print(output.values.y)

Extra options are solver specific, but there is usually support for passing in
user data (passed as additional arguments to the provided right_hand_side),
and for setting the tolerance of the solver. See Choosing a Solver for
more information about individual solvers.

Examples

There are a number of dae examples showing different features, including
solver specific features. Here are some of them:

	https://github.com/bmcage/odes/blob/master/ipython_examples/Double%20Pendulum%20as%20DAE%20with%20roots.ipynb

	https://github.com/bmcage/odes/blob/master/ipython_examples/Planar%20Pendulum%20as%20DAE.ipynb

Lower-level interfaces

Using the lower-level interfaces is solver-specific, see the API docs for more
information [https://bmcage.github.io/odes] and Choosing a Solver for
comparisons between solvers.

Choosing a Solver

odes interfaces with a number of different solvers:

	CVODE [https://computation.llnl.gov/projects/sundials/cvode]

	ODE solver with BDF linear multistep method for stiff problems and Adams-Moulton linear multistep method for nonstiff problems. Supports modern features such as: root (event) finding, error control, and (Krylov-)preconditioning. See scikits.odes.sundials.cvode [https://bmcage.github.io/odes/dev/api.html#module-scikits.odes.sundials.cvode] for more details and solver specific arguments. Part of SUNDIALS, it is a replacement for the earlier vode/dvode.

	IDA [https://computation.llnl.gov/projects/sundials/ida]

	DAE solver with BDF linear multistep method for stiff problems and Adams-Moulton linear multistep method for nonstiff problems. Supports modern features such as: root (event) finding, error control, and (Krylov-)preconditioning. See scikits.odes.sundials.ida [https://bmcage.github.io/odes/dev/api.html#module-scikits.odes.sundials.ida] for more details and solver specific arguments. Part of SUNDIALS.

	dopri5 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html]

	Part of scipy.integrate [https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate], explicit Runge-Kutta method of order (4)5 with stepsize control.

	dop853 [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html]

	Part of scipy.integrate [https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate], explicit Runge-Kutta method of order 8(5,3) with stepsize control.

odes also includes for comparison reasons the historical solvers:

	lsodi [http://www.netlib.org/odepack/opkd-sum]

	Part of odepack [http://www.netlib.org/odepack/opkd-sum], IDA should be
used instead of this. See scikits.odes.lsodiint [https://bmcage.github.io/odes/dev/api.html#module-scikits.odes.lsodiint] for more details.

	ddaspk [http://www.netlib.org/ode/]

	Part of daspk [http://www.netlib.org/ode/], IDA should be used instead of this. See scikits.odes.ddaspkint [https://bmcage.github.io/odes/dev/api.html#module-scikits.odes.ddaspkint] for more details.

Support for other SUNDIALS solvers (e.g. ARKODE) is currently not implemented,
nor is support for non-serial methods (e.g. MPI, OpenMP). Contributions adding
support new SUNDIALS solvers or features is welcome.

Performance of the Solvers

A comparison of different methods is given in following image. In this BDF, RK23, RK45 and Radau are python implementations [https://github.com/scipy/scipy/pull/6326]; cvode is the CVODE interface included in odes; lsoda, odeint and vode are the scipy integrators (2016) [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html], dopri5 and dop853 are the Runge-Kutta methods in scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html]. For this problem, cvode performs fastest at a preset tolerance.

[image: _images/PerformanceTests.png]
You can generate above graph via the Performance notebook [https://github.com/bmcage/odes/blob/master/ipython_examples/Performance%20tests.ipynb].

Reporting Bugs, Contributing and Releasing

We welcome contributions, whether as bug reports, improvements to the code, or
more examples.

Please note that all contributions are subject to our code of conduct [https://github.com/bmcage/odes/blob/master/CONTRIBUTING.md].

Reporting Bugs

odes bug tracker is on GitHub [https://github.com/bmcage/odes].

When reporting bugs, please include the versions of Python, odes and SUNDIALS,
as well as which OS this appears on.

Getting the code

The primary repository is at https://github.com/bmcage/odes, and it is the
repository that pull requests should be made against.

Work should be done in a private branch based on master, with pull requests made
against master.

Running the Tests

odes uses tox [https://tox.readthedocs.io/] to manage testing across
different versions.

To install tox, use:

pip install tox

and to run the tests, inside the top level of the repository, run:

tox

Adding Examples

Examples should be added in the examples folder.

Adding ipython/jupyter notebook examples

Please submit extra jupyter notebook examples of usage of odes. Example
notebooks should go in ipython_examples, and add a short description to
ipython_examples/README.md.

Building the Docs

The documentation for odes is split into two parts, the main docs (of which
this is a part), and the API docs. Both the main docs and API docs use sphinx [http://www.sphinx-doc.org/]
to build the docs, and running make html inside either of the associated
directories will cause sphinx to create a html version of the docs.

The main docs are located in the docs directory, and the requirements for
building it are in docs/requirements.txt.

The API docs are located in the apidocs directory, and the requirements for
building it are in apidocs/requirements.txt.

Creating a New Release

There are five steps to creating a new odes release:

	Make a non-development version.

	Create a new release on GitHub [https://github.com/bmcage/odes].

	Publish the new release on Zenodo [https://zenodo.org].

	Upload the new release to PyPI [https://pypi.org].

	Bump the version to the next development version.

The main docs should automatically build on readthedocs [https://readthedocs.org], and the API docs should
be built by doctr [https://drdoctr.github.io/doctr/]. You should check that the docs have updated once you have
make the release. If docs are not updated automatically, login to readthedocs [https://readthedocs.org]
go to scikits, builds, and build latest and master manually.

Making a non-development version

To make a non-development version, inside common.py change DEV=True to DEV=False, and if needed, modify MAJOR, MINOR and MICRO to set the new release version.
Then commit only these changes and push them to the main repository (bmcage/odes).

Creating a new release on GitHub [https://github.com/bmcage/odes]

On GitHub, draft a new release [https://github.com/bmcage/odes/releases] by clicking the appropriate button. Use the version number from the non-development commit as the title, and hit release. This will upload the release for a DOI to Zenodo [https://zenodo.org] as draft.

Publishing the new release on Zenodo [https://zenodo.org]

Go to uploads in Zenodo [https://zenodo.org], edit the uploaded new release, adding addition information as needed such as ORCID [https://orcid.org/], save and hit the publish button. This will generate a DOI.

Uploading the new release to PyPI [https://pypi.org]

Make sure the current checkout is the non-development commit. To make sure no
additional changes are included in the release, run:

git stash save --no-keep-index --all

This saves the current working directory, then cleans it. The changes can be
retrieved by running git stash pop (but you should not do this until the
end).

In the cleaned repository, run:

python setup.py sdist --formats=gztar

which creates a dist directory containing a tar.gz file, the sdist for
the release. To upload the sdist to PyPI [https://pypi.org], run:

python3 -m pip install --user --upgrade twine
python3 -m twine upload --repository-url https://upload.pypi.org/legacy/ dist/*

See https://packaging.python.org/tutorials/distributing-packages/#uploading-your-project-to-pypi for more information about uploading to PyPI [https://pypi.org].

Bumping the version to the next development version

Modify MAJOR, MINOR and MICRO in common.py to a later version (increasing MICRO by 1 is sufficient). Also in common.py, change back to DEV=True. Finally, copy the DOI badge of of the latest release from Zenodo [https://zenodo.org] to the README.md, and commit only these two files. You can now run git stash pop to retrieve what you were working on.

Citing ODES

If you use ODES as part of your research, can you please cite the
ODES JOSS paper [https://doi.org/10.21105/joss.00165]. A bibtex entry for the paper is below:

@article{ODES,
 doi = {10.21105/joss.00165},
 url = {https://doi.org/10.21105/joss.00165},
 year = {2018},
 month = {feb},
 publisher = {The Open Journal},
 volume = {3},
 number = {22},
 pages = {165},
 author = {Benny Malengier and Pavol Ki{\v{s}}on and James Tocknell and Claas Abert and Florian Bruckner and Marc-Antonio Bisotti},
 title = {{ODES}: a high level interface to {ODE} and {DAE} solvers},
 journal = {The Journal of Open Source Software}
}

Individual releases have
DOIs on Zenodo [https://doi.org/10.5281/zenodo.596566],
which you can cite in addition to the
JOSS paper. Additionally, if you use one of the SUNDIALS solvers, we strongly
encourage you to cite the SUNDIALS papers [https://computation.llnl.gov/projects/sundials/publications]. Finally, ODES is built upon the
hard work of the numpy, scipy and Cython developers, we strongly
encourage you to cite [https://www.scipy.org/citing.html] them also.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to the ODES scikit documentation!

 		
 Installation

 		
 Requirements before install

 		
 Installation

 		
 Testing your version of odes

 		
 Running the Tests

 		
 Installation of ODES from git checkout

 		
 Troubleshooting

 		
 LAPACK Not Found

 		
 Linking Errors

 		
 Using Nix

 		
 Structure of odes and User’s Guide

 		
 Simple Function Interface (odeint)

 		
 Object Oriented Interface (ode and dae)

 		
 ode Object Oriented Interface

 		
 dae Object Oriented Interface

 		
 Lower-level interfaces

 		
 Choosing a Solver

 		
 Performance of the Solvers

 		
 Reporting Bugs, Contributing and Releasing

 		
 Reporting Bugs

 		
 Getting the code

 		
 Running the Tests

 		
 Adding Examples

 		
 Adding ipython/jupyter notebook examples

 		
 Building the Docs

 		
 Creating a New Release

 		
 Making a non-development version

 		
 Creating a new release on GitHub

 		
 Publishing the new release on Zenodo

 		
 Uploading the new release to PyPI

 		
 Bumping the version to the next development version

 		
 Citing ODES

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/PerformanceTests.png
time

101-

101~

102-

1079
107°

method
BDF

RK23

RK45

Radau

cvode ADAMS
cvode BDF
dopas3
dopris

lsoda

odeint

vode adams
vode bdf

10° 10° 107 10° 10° 104 107 10?2

err

_static/ajax-loader.gif

